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We construct a multirelaxation lattice Boltzmann model [1] on a two-dimensional
rectangular grid. The model is partly inspired by a previous work of Koelman [2] to
construct a lattice BGK model on a two-dimensional rectangular grid. The linearized
dispersion equation is analyzed to obtain the constraints on the isotropy of the trans-
port coefficients and Galilean invariance for various wave propagations in the model.
The linear stability of the model is also studied. The model is numerically tested for
three cases: (a) a vortex moving with a constant velocity on a mesh with periodic
boundary conditions; (b) Poiseuille flow with an arbitrary inclined angle with respect
to the lattice orientation; and (c) a cylinder asymmetrically placed in a channel. The
numerical results of these tests are compared with either analytic solutions or the
results obtained by other methods. Satisfactory results are obtained for the numerical
simulations @ 2001 Academic Press

1. INTRODUCTION

Historically originating from the lattice gas automata (LGA) introduced by Frisck
Hasslacher, and Pomeau [3], the lattice Boltzmann equation (LBE) has recently bec
an alternative method for computational fluid dynamics. The essential ingredients in
lattice Boltzmann models which are required to be completely specified are: (i) a discr
lattice space on which fluid particles reside; (ii) a set of discrete velocities (often going frc
one node to its nearest neighbors) to represent particle advection; and (iii) a set of rule:
the redistribution of particles residing on a node to mimic collision processes in a real flu
Fluid-boundary interactions are usually approximated by simple reflections of the partic
by solid interfaces.
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In a hydrodynamic simulation by using the lattice Boltzmann equation, one solves:
evolution equations of the distribution functions of fictitious fluid particles colliding an
moving synchronously on a highly symmetric lattice space. The highly symmetric latti
space is a result of the discretization of particle velocity space and the condition for s
chronous motions. Thatis, the discretizations of time and particle phase space are coher
coupled together. This makes the evolution of the lattice Boltzmann equation very simpls
it consists of only two steps: collision and advection. One immediate limitation of the LE
method is due to its use of highly symmetric regular lattice mesh, which are usually triani
lar or square lattices in two dimensions and cubic in three dimensions. Obviously, this
serious obstacle to its applications in many areas of computational fluid dynamics. To
with complex computational domains, various proposals have been made to use grids
are better suited to fit boundaries or to adapt meshes according to the physics of the sy:

It has been shown recently that the lattice Boltzmann equation is indeed a special fi
difference form of the continuous Boltzmann equation with some drastic approximatic
tailored for hydrodynamic simulations [4, 5]. This makes the lattice Boltzmann meth
more amenable to incorporate body-fitted meshes [6] or grid refinement techniques
In most cases, the regular lattice mesh is abandoned by decoupling the spatial-tem|
discretizations and the discrete velocity set, so that interpolations can be used in add
to the advection on a nonregular or nonuniform mesh. However, interpolations introd
additional numerical viscosities and other artifacts into the lattice Boltzmann method |
Therefore, it is highly desirable to construct lattice Boltzmann models with arbitrary me
and free of interpolations [2, 9].

In this paper, we shall consider a two-dimensional model on a rectangular grid with
aspect ratio ok = 8y/8y, where O< a < 1. The model is inspired in part by a previous
work of Koelman [2] who proposed a general scheme to construct lattice BGK models w
given discrete velocity sets based on a low Mach number expansion of the Maxwell
equilibrium distribution function. Conservation and symmetry constraints are imposec
fix the parameters in the equilibrium distribution function. Koelman’s model is essentia
a variation of the lattice BGK model [10, 11]. As we shall show, the transport coefficier
of this model are generally anisotropic wheeg: 1 [12].

We use the generalized lattice Boltzmann equation with multiple relaxation times
d’Humiéres [1], instead of the standard lattice BGK model [10, 11]. The generalized LE
model has the freedom of multiple relaxations which can be independent or coupled
gether. This allows one to optimize the overall properties of the model through suita
compensation of inadequate behaviors. We shall study the time evolution of plane we
by analyzing the linearized dispersion equation of the model [8]. This analysis allows
to obtain the conditions under which the model can be used to simulate the Navier—Stc
equation, i.e., the model is Galilean invariant and isotropic up to a certain order in wa
numberk. We show that severe stability constraints are due to Galilean invariance ¢
isotropy of transport coefficients. This demonstrates the difficulty in the endeavor of c
structing a lattice Boltzmann model with arbitrary grid. Simulations of nontrivial cases &
presented to demonstrate the qualities and defects of the model.

We organize the paper as follows. Section 2 describes the proposed model on a recte
lar grid. Section 3 shows a detailed analysis of the dispersion equation. The wave-nun
dependence of Galilean coefficient and attenuation coefficients are computed explicitl
obtain the conditions under which the model is Galilean invariant and isotropic. Sectio
provides examples of numerical simulations using the proposed model: (a) a vortex moy
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with a uniform velocity in a periodic system; (b) Poiseuille flow with the boundaries alon
arbitrary direction with respect to the underlying lattice; and (c) flow past a cylinder asy!
metrically placed in a channel. Section 5 concludes the paper.

2. DEFINITION OF THE MODEL

We consider a two-dimensional LBE model with nine discrete velocities (the D2C
model) on a rectangular grid of dimensions 1 an@in what follows all quantities are given
in nondimensional units, normalized by the lattice uRi) In the advection step of the
lattice Boltzmann equation, particles move from one node of the grid to one of its neighb
as illustrated in Fig. 1. The discrete velocities are given by

O, 0, oa=0,
e, = { (cosfe — Dmr/2], a sin[(« — 1)/2]), a=1-4, (1)
(cos[(2a — 97 /4], a sin[2e — 97 /4])v2, o« =5-8,

where the duration of the time stép is assumed to be unity. At any timg, the LBE
fluid is then characterized by the populations of the nine velocities at each node of
computational domain

F(rj, t) = (fo(rj, t), f1(rj, ta), -, fa(rj, ta)7, )

whereT is the transpose operator. Here upon the Dirac notation of(hraand ket,|-),
vectors is used to denote row column and row vectors, respectively. The time evolutior
the state of the fluid follows the general equation

f(rj+e, ta+ D) =[f(rj, t)) + Q) th), ®3)

where collisions are symbolically represented by the opefator

We shall use the generalized lattice Boltzmann equation introduced by dédtesiL], in
which the collision process is executed in moment spdc&he mapping between moment
space and discrete velocity spa¢spanned bye, } is one-to-one and defined by the linear
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FIG. 1. Discrete velocities of the nine-velocity model on a rectangular grid. The aspect ratio of the rectan
isé8y/8 = a.
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transformatiorM which maps a vectdrf) in V to a vector| fA) inM, i.e.,
|fy =M|f), and |f) =M} f). (4)

To reflect the underlying symmetries appearing in both the Chapman—Enskog expan
and the dispersion equatiav, is constructed as the following

(my| 1 1 1 1 1 1 1 1 1

(my] =201 @2 @3 @2 Y3 @1 91 P1 @1

(m3| 4 -2 -2 -2 -2 1 1 1 1

(My| 0 1 0O -1 0 1 -1 -1 1
M=|ms|=] 0 -2 0 2 0 1 -1 -1 1 (5)

(meg| 0 0 a 0O -a a a —-a —-a

(my| 0 0 -2 0 22 a a -a -a

(mg| —204 @5 @6 Y5 Yo Y4 Ya P4 @4

(mg| 0 0O 0O O 0O a -a a -a

= (Imy), [mp), M), Img), IMs), |Mg), [M7), |mg), [Mg))T,

wheregp; = a2+ 1, g, =1—-2a% ¢p3=a2—2, pa=a2—1, gs=a?+2, and g =
—(1+ 2a?).

The components of the row vectémg| in matrix M are polynomials of thex andy
components of the velocitig®, }, e, x ande, y. The vectorsmg|, g =1, 2,---,9, are
orthogonalized by the Gram—-Schmidt procedure in a carefully considered order. The
three orthogonal vectors correspond to the massand y-momentum modes{m;| =
(lex]°], (m4] = (ey.x|, and(mg| = (éw,y|. The above expressions prescribe the componen
of {(my], (my|, and(mg|. These three vectors span the hydrodynamic subspace of the eig
space of the collision operator for a two-dimensional athermal LBE model. The remain
six vectors span the kinetic subspace. The vetn = (3||e, |2 — 2(1+ a?)| &, ||°| is
constructed by orthogonalizing the energy mofke, ||2|. Similarly, vectors(ms| and(my|
are respectively built upote, x e, [I?| and (e, ylle,lI?[; {(mg| is constructed upore? , —
eg‘y| and (mg| = (&, x&.y|; and finally (ms| is obtained from{|| e, ||*|. By means of their
construction, the row vectorsMare mutually orthogonal, but they are not normalized, thei
norms being chosen to simplify algebraic manipulations. Wéen1, M reduces to that
for the D2Q9 model on a square grid with a different normalizatiompgf) [8]. Therefore,
the proposed model can be considered as a generalization of the model on a square I
It should be noted that whem# 1, there are three nonzero (kinetic) energy levels in th
model which introduce additional degrees of freedom into the model and extra care n
be taken in the construction &i,|, (mg|, and(ms|, i.e., they must be orthogonalized with
the Gram—Schmidt procedure in the particular ordeinaf], (mg|, and(ms].

It is interesting to note that the momentsg| f) have a physical interpretation. The
matrixM so constructed in the above naturally leads to the moment vector in moment sp
M as

|fA> =(p, & ¢, jx, Ox, jy, Ay, Pxx, ny)T, (6)

wherep is the densityg is related to the kinetic energy,is related to the kinetic energy
squared fora = 1 (but has no obvious physical meaning wheg 1), jx and j, arex
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and y components of the momentum density, and g, are proportional to thex and
y components of the energy flux, amgdy and pyy are proportional to the diagonal and
off-diagonal components of the viscous stress tensor.

For the collision process, we propose to use the following equilibrium distribution fun
tions of the (nonconserved) moments, which depend only on the conserved moments,
p.and = (jx, jy),

3
€€ =232 - 1-a%)p + ;(jf +if), (7a)
gea L, (7b)
4
1
9 = Zoijy (7c)
2
49 = ~c,] (7d)
y 274y
(a2 -1 3 . 1.
o3 = == [3@%+ 1)cZ — 2a%] p + A (azjf - a21y2>, (7e)
1.
pS? = oy (7f)

where the coupling coefficient betweetf? andp (which vanishes in the standard D2Q9
LBE model) is introduced to obtain the isotropy of the sound speed. The values of the ¢
pling constantsds, ¢;, andc,) in the above equilibria are obtained by optimizing isotropy
and stability of the model [8]. It should be noted that the energy is not considered as a ¢
served quantity here because the model is athermal. (The model does not possess sulff
degrees of freedom to accommodate the dynamics of locally isotropic heat transport.)

In what follows the idea of the “incompressible” LBE [13] is applied to the abov«
equilibria so thap is replaced by a constapg in the denominators of equations (7a), (7e),
and (7f). This choice allows for better comparison with other incompressible simulatio
and simpler algebra while retaining correct acoustics.

The collision process is modeled by the following relaxation equations

1) =1f) =s[if) —1fe), ®)
where| f*) denotes the postcollision state, &k the diagonal relaxation matrix

S =diag0, 5, 3, 0, S5, 0, 7, S, o). 9

The model reduces to the usual lattice BGK model if all the relaxation parameters are
to be a single relaxation time (anda = 1), i.e.,s, = 1/7. It should be stressed that the

relaxation parameters are not independent, as shown in the next section. The constrair
isotropy lead to the coupling between these relaxation parameters [8]. Obviously, the u:
lattice BGK model does not possess the freedom for such couplings, therefore it would
work on a rectangular grid.
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3. ANALYSIS OF LINEARIZED DISPERSION EQUATION

The analysis presented in what follows is similar to that presented in [8], where the g
of the work was to determine the stability conditions for the coupling coefficientand
a3, and the constraints on the relaxation parameders

We consider a system of si2¢, x Ny with periodic boundary conditions and look for
small amplitude solutions in the presence of a uniform flow [for given values afid
V = (W, Vy) = J/p]. For a wave vectok in the reciprocal space of the computational
domain, we search for solutions

fo(r,t) ocexp(—ik - r + zt). (10)
To first order ink, we have the linearized dispersion equation,
detK® + M~ICM — zI) = 0, (11)

wherel is the identity operatoK ™ is the linearized advection operator which is a diagona
matrix

KD = diag, ik -er, ..., ik- e, (12)

andC is the linearized collision operator

0 0 0 0 0 0 0 0 0
s - 0 6Vy S, 0 6VyS 0 0 0
azs/4 0 -3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
C= 0 0 0 as/2 -s 0 0 0 0|, (13)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 CpS7/2 -5 0 0
W5Ss 0 0 @Ws 0 -6Vs/a? 0 -s
0 0 0 VySy 0 VxS 0 0 —s
where
as = 2[3c2 — (1+a?)], (14a)
1— 2
o5 = ( aza ) [2a® — 3cZ(@* + 1)]. (14b)

The linearized dispersion equation (11) can be solved by perturbation technique in po
series ok [8]. To ensure isotropy and Galilean invariance in the limikof> 0, we need
to solve the linearized dispersion equation ugto

In the first order ok, three solutions are obtained: one corresponds to transverse
citations which are convected with the uniform speed of the fkuiid//k, whereas the
other two are acoustic waves with phase velodity, where the speed of soumd can
be chosen within limits that is deferred to later discussion. The sound waves also have
correct dependence on the applied uniform velo¥itgf the fluid up to first order inv,
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i.e.,cs = Cs = V cose, whereg is the angle betweekandV. The nonlinear terms in the
equilibria of Egs. (7a)—(7f) provide the correct Galilean coefficients for both transverse &
longitudinal waves.

In the second order (ik) of the solutions of the dispersion equation, the constraints o
the isotropy of the transport coefficients for the hydrodynamic modes lead to

C+4(1-ad)
and the following relationships between the relaxation parameters
1 2(4+cp) [(12¢3 — ) (1 + @2) — 2(5a% + 2)] 1 (162)
%  (1+ad)(l+c—3a2)(cp+ 10— 12c2) +6[a*(c, — 2) — 3@2 — 1] &’
1 2(4 4 c2)[(12¢2 — c2) (1 + a®) — 2(3a* + 5a? + 5)] 1 (16b)

% (1+a)(1+c—3a2)(c+ 10— 12c2) + 6[ad(c, — 2) — 3(a2 — 1)]

where 1§, = (1/s, — 1/2). The coupling betwees, andsg is required only whema £ 1.
The kinematic shear viscosityand the kinematic bulk viscosity are

4+c, (1 1
_ .1 17
"7 <s9 2>’ (172)
1 ) o (1 1
¢ = 12(7+3a + ¢ — 12¢c%) (sz 2). (17b)

For a givena, the speed of sound ang must be chosen such that the shear and bull
viscosities are positive and the Eqgs. (16a) and (16b) lead to positive valuspsafousg.

The values o€ andc,, which optimize the isotropy and stability of the model, depending
on the grid aspect rat@®, are determined by the linear analysis of the model [8]. In the cas
of square grid, i.ea = 1, we have found? = 1/3 andc, = —2. This result coincides with
the one given in [8] and the relationship betwegandsy given by Eq. (16b), and the shear
and bulk viscosities given by Egs. (17a) and (17b), all reduce to the previous results fc
square lattice wherg = —2 [see Eqs. (40)—(43) in [8] fax, So(Sg), v, andz, respectively].
However, the coupling betweep andsg is unigue to the model on a rectangular grid. This
coupling is due to the dependencemf? on p, which in turn leads the termssg in the
linearized collision operatdC in Eq. (13). Finally, note thats has little influence and is
set to be equal te-2.

The linearized dispersion equation can be solved numerically for any valketmf
determine the linear stability of the system by computing the rate of growth of spatia
periodic excitations superimposed to a uniform flow of constant vel&&itgs previously
shown in the case of a square grid [8]. Through this analysis it is found that the pres
model is much less stable than the square one, i.e., the stable region in parameter spe
V ands, is much smaller than that for the model with a square lattice. For instance, wh
a = 1/2, a stability condition is tha¢ < 0.05, whereas for the model with a square lattice
(a = 1), the same stability condition is thelt < 0.20. One reason for this is that in general
the sound speed decreases with the aspect ratjdor instance, whea = 1/2 the optimal
speed of sound is about 0.377, which is different from the usual 1/+/3 ~ 0.577 on
a square lattice. Therefore, the local velocity magnitude must be decreased accordi
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to keep the local Mach in check so that the low Mach number approximation rema
valid. This means that the present model will have limited ability to simulate flows eve
at moderate Reynolds numbers. In addition, when using a combination of rectangular
square grids (the simplest case of grid refinement in one direction) in the situation wh
acoustic propagation is important, it will not be possible to choose an optimal value of
sound speed for the two different grids.

We would like to note that, although there is no simple interpretation of the instabili
of the LBE models because of the presence of a uniform vel&&itypformation on the
instability can be obtained by analyzing the velocity dependence of the attenuation of so
waves using the linearized dispersion equation [8].

Let us consider the case where the uniform velocity is parallel to the wave wewith
a polar angle® (betweenk and x-axis). For small values df and the particular choice
of ¢,

c, = (@2 —3), (18)

we have the following results. The transverse mode has phase velgcityV and its
attenuation is given by

AV I 9(1 — a?)?sirt 26
vi=Kk (Sg 2)( 6 v {1 2[1-132+a*+6(1+adc?] | ) (19)

For the longitudinal modes, we obtain as phase velagit¢ +,/cZ + V2 and attenuation
coefficienty; = (y + y1)/2, with (to first order inV)

2(1 1) (1+a2—3c§ %
w=k|—— +
2 2 3 Cs[1+8a2+a* — 12(1 + a?)c?]

x{(1+ a?)(7a®+ 36c) — 3(7 + 12a° + 3a”) cZ

+ 12(1 — a®c2coh [2 + (1 — a®)(2 — 3cog0)] }) : (20)

Contrary to the case of square grid, it is not possible in general with a given vadug df

to find a value ofcs for which the linear dependence of the attenuation of acoustic wav
onV can be eliminated (foa = 1, this can be accomplished by setticfig= 1/3). This is

a possible cause of instability in the model.

4. SIMULATIONS

We use the two-dimensional multirelaxation LBE model on either a square grid ol
rectangular grid for the following simulations. The central routine (collision and advectio
is quite close to that for the standard square LBE and leads to similar performances (u
a workstation with a 500 MHz EV6 processor, the overall computation time per node &
per time step is in the range 0.2 to 0.4 microsecond depending whether the cache is |
enough or not).
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4.1. A \Vortex Traveling with a Constant Velocity

To test the ability of the present LBE scheme to simulate a viscous flow, we consider
particular case of a simple vortex superimposed to a uniform flow of velvCiwye take
as initial condition for the flow

Up(r, t =0) =V + (Yo — Y, X — Xo) wo €Xp[—(r — r0)?/ R, (21)

whererg = (X, Yo) is the initial position of the vortex center, angd and R characterize,
respectively, the amplitude and the extent of the vortex. The evolution of the corresponc
macroscopic flow is fairly simple: the center of the vortex travels with the velatiand
the maximum value of the vorticity (at the centgr+ Vt) decays in time as

R4a)o _ wQ
(R2 +4vt)2 ~ (1 + 4t)2°

wmax(t) = (22)

wheret* = vt/R? is the dimensionless time.

The system size ity x Ny = 109x 109, with a grid aspect ratia = 1/2. The size
of the vortex isR = 6. Values of other parameters atg:= —3.5, a3 = 2.0, ¢, = —2.9,
andsg = 1.8, i.e.,v = 0.01018 according to Eqg. (17a). The results obtained by the LBl
simulations with various conditions agree very well with the analytic solution of the flo
for V = 0. However, whernV increases there are departures from the simple result
Eqg. (22) because of the dependence of the transport coefficientg-tamtor onV, as
discussed for the square grid in [8]. An example of such behavior is demonstratec
Fig. 2. Figure 2 shows two LBE simulation resultssf.« as a function of dimensionless
time t* = vt/R?, with V = (0, 0) andV = (0.05, 0). Equation (22) is used to fit the
data to obtain the viscosity. The results are 0.9876vy andv = 0.8966, for Vx = 0 and
Vy = 0.05, respectively, wheng is given by Eq. (17a). There are two factors that contribute
to the correction in the viscosity: the wave-numliedependence and-dependence of

FIG.2. LBE simulation of a moving vortex. Decay of the vorticity maximum. The grid aspect ratiorl/2.
Symbol+ and x are simulation results fov = 0 andV = 0.05, respectively. The solid lines are fitting of the
data according to Eq. (22) with the viscosity of value- 0.9876), andv = 0.8966v,, respectively, where, is
given by Eq. (17a).
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the transport coefficients [8]. The same simulations are performed on a square grid
the results arex = 0.9866,9 andv = 0.8745 for V, = 0 andV, = 0.05, respectively. It
should be noted thatin the LBE simulations, initial conditions include not only the consen
guantities such as the density and velocity fields, but also all the nhonconserved quant
such as fluxes and the stress, which can be obtained from the initial velocity field thro
a Chapman—Enskog analysis of the model.

4.2. Poiseuille Flow with Arbitrarily Inclined Walls

The second test is the two-dimensional Poiseuille flow with arbitrarily inclined wall
This situation allows us to test the no-slip boundary conditions in the LBE model. V
consider a system of sizé, x Ny with periodic boundary conditions. The boundaries
of the channel are placed with an arbitrary inclined arfgleith respect tox-axis, as
illustrated in Fig. 3. The no-slip boundary conditions used here for the channel walls are
interpolated bounce-back boundary conditions proposed in [14]. The interpolated bour
back boundary conditions combine interpolation and bounce-back schemes to deal !
boundaries which are off the lattice points.

We first studied the time evolution of the flow starting at rest, and compared the res
obtained by using the rectangular and square grids. The time evolution of velocity field:
the two systems agree very well with each other. We also studied the momentum transf
the boundary. We found an excellent agreement between its measurements for the st
and the rectangular grids, and its expected vatud:9, V, wherelL is the length of the
boundary, and, V, is the normal derivative of the shear velocity with respect to the wal
computed at the wall.

Note that when we compute the momentum transfer for the rectangular grid, the cc
ponents of the usual momentum transfer have to be multiplied by a fattcaccount for
the surface of the elementary cell (assuming that all results are in nondimensional u

FIG.3. 2D Poiseuille flow with arbitrary inclined walls. The system size is assumedi beN,. The discs
are grid points. The solid lines are the advection lines of the discrete velocities. The dashed lines are the bount
of the channel. The width of the channeNsg. The no-slip boundary conditions are enforced at the intersection
of the dashed lines and the thin solid lines.
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defined on the square grid). In order to better understand the origin of this factor, one he
remember thap andj are the mass and momentum densities (mass and momentum per |
surface), while the momentum transfer has to be computed from momentum: (momen
density)x (cell surface). Usually a unique regular grid is used and the cell volume can
taken as unit volume. Here however the surface of the cells is equal to the chosen as
ratioa once the square cell has been taken as unit surface. Indeed this remark applies t
next section when computing the drag and lift coefficients.

4.3. Flow Past a Cylinder Asymmetrically Placed in a Channel

The third test we did was a two-dimensional flow past a cylinder asymmetrically plac
in a channel. This flow has been used as a standard benchmark test in CFD [15]. The
configuration is as follows: a cylinder of diametgis placed in a channel of width
and length 24, the center of the cylinder is asymmetrically (with respect to the center lir
of the channel) located at horizontallg 2rom the entrance, and verticallydZrom the
lower wall of the channel, as shown in Fig. 4. The boundary condition at the entrance |
Poiseuille profile with average spedd The boundary condition at the exit is free exit with
a total flux equal to the input flux. The bounce-back boundary conditions are used for
channel walls, and the interpolated bounce-back boundary conditions with a second-o
interpolation [14] are used for the boundary of the cylinder. The Reynolds number for
flow is

Re= U—d
Vv
We use the LBE model to simulate the flow at Rel00 for which there is periodic vortex
shedding behind the cylinder.

The flow was computed on rectangular grids with several different values of the g
aspect rati@, and compared to the results with a square grid. The measured quantities
Strouhal number St, maximum dr&fi®*, maximum lift coefficientC"®, minimum lift
coefficientC"", and the pressure differeneeP. The results are summarized in Table I.
Table | also shows the lower and upper bounds ofc8&* C"®, and AP, obtained by
a number of conventional CFD methods presented in [15]. Overall, the LBE simulati
results with square or rectangular grids agree well with each other, and with the CFD res
in [15]. Figure 5 shows the contours of the stream functi@r, y) and the vorticityw (X, y)
of the simulations on a square grid of sikg x Ny = 1401x 308 and on a rectangular
grid of sizeNx x Ny = 1401x 616. The relativeL 2-norm difference of the two velocity
fields is about 2 x 10~*. Note that the aspect ratio for this particular calculation is slightly

224
(u, v} = (0, 0)

1.6d

1.54
4 flow direction —

1.8d
3 (u, v) = (0, 0)

FIG. 4. Configuration of a 2D flow past a cylinder asymmetrically placed in a channel.
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TABLE |
2D Flow Past a Cylinder Asymmetrically Placed in a Channel at Re =100

a G C Ny x Ny St Cp crax cpin AP
1.00 /3 -2 709x 132 0.3021 3.153 0.926 —1.018 2.50
0.85 0.6141 -0.80 709x 155 0.3018 3.186 0.984 -1.051 2,51
0.80 0.5829 —-0.90 709x 165 0.3020 3.174 0.950 -1.062 251
0.75 0.5412 -1.10 709x 176 0.3018 3.173 0.965 —1.053 251
0.70 0.5113 —-1.50 709x 188 0.3007 3.195 1.013 -1.071 2,51
0.65 0.4761 —1.70 709x 203 0.3009 3.184 0.999 -1.062 247
0.60 0.4417 —2.00 709x 220 0.3009 3.176 1.002 -1.053 2.45
0.55 0.4086 —2.25 709x 240 0.3015 3.189 1.005 -1.052 2.42
0.50 0.3770 —-2.55 709x 264 0.3007 3.199 1.019 -1.084 245
0.45 0.2977 —-2.90 709x 293 0.2992 3.204 1.053 -1.107 2.50
CFD lower bound in Ref. [15] 0.2950 3.22 0.99 — 2.46
CFD upper bound in Ref. [15] 0.3050 3.24 1.01 — 2.50

different from that shown in Fig. 4, but this has negligible effect for the present purpose
comparing results on the square and the rectangular grids.

The relative fluctuation of Strouhal number St is well under 1% and the values of St
well within the bounds in [15]. The fluctuation @f}®*is also under 1% but the values of
Cph®are all slightly lower than the results in [15]. The fluctuatiom\d? is about 1% and the
values ofA P agree well with the results in [15]. The values of lift coefficient obtained b
the LBE simulations have a variation abatf%, which is much greater than the variations
in other measured quantities.

A possible origin of the discrepancy in the lift coefficients is the following. The LBE
method is intrinsically a compressible scheme and acoustic waves may be generated by
initial conditions that do not include a proper pressure field or the flow itself that genera
an oscillating pressure field as is the case considered here. For a given value of the s
speed and a given choice of the boundary conditions at the entrance and exit of the che

0 200 400 600 800 1000 1200

FIG.5. 2D flow past a cylinder asymmetrically placed in a channel aER®0. Top and bottom figure show
contours of the stream functiaf(x, y) and the vorticityw (x, y) of the flow, respectively. The dashed lines are
the simulation results on a square grid of sigex N, = 1401 x 308, and the solid lines are that on a rectangular
grid of sizeN, x N, = 1401x 616.
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the frequency of some of the longitudinal acoustic modes can be close to multiples of
Strouhal frequency in the flow. This causes resonances between some of the acoustic v
and the periodic shedding of vortices by the cylinder. The coupling between acoustic wa
and vortex shedding indeed affects the hydrodynamic fields, and in turn, various measit
guantities. Among the measured quantities, the lift coefficients are most sensitive to |
effect. The mean drag coefficient is also affected but to a much smaller extent. This prob
is of broad interest. However, it will be easier to study it with the model of square grid f
which the speed of sound and the bulk viscosity can be chosen in a broader range tha
the model of rectangular grid. A detailed study is beyond the scope of the present work
will be addressed elsewhere.

5. CONCLUSION AND DISCUSSION

In this paper we have successfully proposed a two-dimensional nine-velocity generali
lattice Boltzmann model with multiple relaxations on a rectangular grid with arbitrar
aspect ratica = 8y/8x. We have numerically validated the model by using the model t
simulate several benchmark problems, and have obtained satisfactory results. In con
to the previous two-dimensional, nine-velocity, multirelaxation model on a square grid [:
the model on a rectangular grid is more prone to instability, and the admissible maxim
value of local velocity magnitude is much less than that in the model on a square gric
should also be stressed that, although this work is in part motivated by a previous work
it is realized that the nine-velocity lattice BGK equation cannot possibly work properly or
rectangular grid. Specifically, the lattice BGK equation does not have sufficient degree:
freedom to satisfy the constraints imposed by isotropy and Galilean invariance. With n
discrete velocities in two dimensions, it is necessary to use the multirelaxations to const
an LBE model on a rectangular grid.

This work is our first attempt to construct a lattice Boltzmann model on an arbitra
unstructured grid. As discussed in Ref. [9], one difficulty encountered in the LBE moc
on an unstructured grid is due to the fact tNa, f £ e,V f because the discrete velocity
set{e,} has spatial dependence. In this work, we found that there are additional issue
the LBE model on an unstructured grid needed to be addressed.

First, we found that the local grid structure severely affects the local sound speed. If
sound speed varies spatially depending on local grid structure, then the model is unphys
Correct acoustic propagation is an essential part of the lattice Boltzmann method. Secotr
the constraints of isotropy and Galilean invariance are difficult to satisfy by using the latt
BGK model, as proposed in [9], unless the discrete velocity set includes a large num
of velocities. Thirdly, the numerical stability is severely affected by the local grid structu
even for uniform structured grid, as we have demonstrated in this work. Stability is of k
importance to an effective lattice Boltzmann algorithm. However, we have not yet develoy
amethod to systematically improve the stability of the lattice Boltzmann method. We belie
that the aforementioned issues must be resolved before we can construct a lattice Boltzr
model on an arbitrary unstructured grid.
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