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We construct a multirelaxation lattice Boltzmann model [1] on a two-dimensional
rectangular grid. The model is partly inspired by a previous work of Koelman [2] to
construct a lattice BGK model on a two-dimensional rectangular grid. The linearized
dispersion equation is analyzed to obtain the constraints on the isotropy of the trans-
port coefficients and Galilean invariance for various wave propagations in the model.
The linear stability of the model is also studied. The model is numerically tested for
three cases: (a) a vortex moving with a constant velocity on a mesh with periodic
boundary conditions; (b) Poiseuille flow with an arbitrary inclined angle with respect
to the lattice orientation; and (c) a cylinder asymmetrically placed in a channel. The
numerical results of these tests are compared with either analytic solutions or the
results obtained by other methods. Satisfactory results are obtained for the numerical
simulations.c© 2001 Academic Press

1. INTRODUCTION

Historically originating from the lattice gas automata (LGA) introduced by Frisch,
Hasslacher, and Pomeau [3], the lattice Boltzmann equation (LBE) has recently become
an alternative method for computational fluid dynamics. The essential ingredients in any
lattice Boltzmann models which are required to be completely specified are: (i) a discrete
lattice space on which fluid particles reside; (ii) a set of discrete velocities (often going from
one node to its nearest neighbors) to represent particle advection; and (iii) a set of rules for
the redistribution of particles residing on a node to mimic collision processes in a real fluid.
Fluid-boundary interactions are usually approximated by simple reflections of the particles
by solid interfaces.
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In a hydrodynamic simulation by using the lattice Boltzmann equation, one solves the
evolution equations of the distribution functions of fictitious fluid particles colliding and
moving synchronously on a highly symmetric lattice space. The highly symmetric lattice
space is a result of the discretization of particle velocity space and the condition for syn-
chronous motions. That is, the discretizations of time and particle phase space are coherently
coupled together. This makes the evolution of the lattice Boltzmann equation very simple—
it consists of only two steps: collision and advection. One immediate limitation of the LBE
method is due to its use of highly symmetric regular lattice mesh, which are usually triangu-
lar or square lattices in two dimensions and cubic in three dimensions. Obviously, this is a
serious obstacle to its applications in many areas of computational fluid dynamics. To deal
with complex computational domains, various proposals have been made to use grids that
are better suited to fit boundaries or to adapt meshes according to the physics of the system.

It has been shown recently that the lattice Boltzmann equation is indeed a special finite
difference form of the continuous Boltzmann equation with some drastic approximations
tailored for hydrodynamic simulations [4, 5]. This makes the lattice Boltzmann method
more amenable to incorporate body-fitted meshes [6] or grid refinement techniques [7].
In most cases, the regular lattice mesh is abandoned by decoupling the spatial–temporal
discretizations and the discrete velocity set, so that interpolations can be used in addition
to the advection on a nonregular or nonuniform mesh. However, interpolations introduce
additional numerical viscosities and other artifacts into the lattice Boltzmann method [8].
Therefore, it is highly desirable to construct lattice Boltzmann models with arbitrary mesh
and free of interpolations [2, 9].

In this paper, we shall consider a two-dimensional model on a rectangular grid with an
aspect ratio ofa = δy/δx, where 0< a ≤ 1. The model is inspired in part by a previous
work of Koelman [2] who proposed a general scheme to construct lattice BGK models with
given discrete velocity sets based on a low Mach number expansion of the Maxwellian
equilibrium distribution function. Conservation and symmetry constraints are imposed to
fix the parameters in the equilibrium distribution function. Koelman’s model is essentially
a variation of the lattice BGK model [10, 11]. As we shall show, the transport coefficients
of this model are generally anisotropic whena 6= 1 [12].

We use the generalized lattice Boltzmann equation with multiple relaxation times of
d’Humières [1], instead of the standard lattice BGK model [10, 11]. The generalized LBE
model has the freedom of multiple relaxations which can be independent or coupled to-
gether. This allows one to optimize the overall properties of the model through suitable
compensation of inadequate behaviors. We shall study the time evolution of plane waves
by analyzing the linearized dispersion equation of the model [8]. This analysis allows us
to obtain the conditions under which the model can be used to simulate the Navier–Stokes
equation, i.e., the model is Galilean invariant and isotropic up to a certain order in wave-
numberk. We show that severe stability constraints are due to Galilean invariance and
isotropy of transport coefficients. This demonstrates the difficulty in the endeavor of con-
structing a lattice Boltzmann model with arbitrary grid. Simulations of nontrivial cases are
presented to demonstrate the qualities and defects of the model.

We organize the paper as follows. Section 2 describes the proposed model on a rectangu-
lar grid. Section 3 shows a detailed analysis of the dispersion equation. The wave-number
dependence of Galilean coefficient and attenuation coefficients are computed explicitly to
obtain the conditions under which the model is Galilean invariant and isotropic. Section 4
provides examples of numerical simulations using the proposed model: (a) a vortex moving
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with a uniform velocity in a periodic system; (b) Poiseuille flow with the boundaries along
arbitrary direction with respect to the underlying lattice; and (c) flow past a cylinder asym-
metrically placed in a channel. Section 5 concludes the paper.

2. DEFINITION OF THE MODEL

We consider a two-dimensional LBE model with nine discrete velocities (the D2Q9
model) on a rectangular grid of dimensions 1 anda. (In what follows all quantities are given
in nondimensional units, normalized by the lattice unitδx.) In the advection step of the
lattice Boltzmann equation, particles move from one node of the grid to one of its neighbors
as illustrated in Fig. 1. The discrete velocities are given by

eα =


(0, 0) , α = 0,

(cos[(α − 1)π/2], a sin[(α − 1)π/2]), α = 1− 4,

(cos[(2α − 9)π/4], a sin[(2α − 9)π/4])
√

2, α = 5− 8,

(1)

where the duration of the time stepδt is assumed to be unity. At any timetn, the LBE
fluid is then characterized by the populations of the nine velocities at each node of the
computational domain

| f (r j , tn)〉 ≡ ( f0(r j , tn), f1(r j , tn), · · · , f8(r j , tn))
T , (2)

whereT is the transpose operator. Here upon the Dirac notation of bra,〈·|, and ket,|·〉,
vectors is used to denote row column and row vectors, respectively. The time evolution of
the state of the fluid follows the general equation

| f (r j + eα, tn + 1)〉 = | f (r j , tn)〉 + |Ä( f (r j , tn))〉 , (3)

where collisions are symbolically represented by the operatorÄ.
We shall use the generalized lattice Boltzmann equation introduced by d’Humi`eres [1], in

which the collision process is executed in moment spaceM. The mapping between moment
space and discrete velocity spaceV spanned by{eα} is one-to-one and defined by the linear

FIG. 1. Discrete velocities of the nine-velocity model on a rectangular grid. The aspect ratio of the rectangle
is δy/δx = a.
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transformationM which maps a vector| f 〉 in V to a vector| f̂ 〉 inM, i.e.,

| f̂ 〉 = M| f 〉, and | f 〉 = M−1| f̂ 〉. (4)

To reflect the underlying symmetries appearing in both the Chapman–Enskog expansion
and the dispersion equation,M is constructed as the following

M =



〈m1|
〈m2|
〈m3|
〈m4|
〈m5|
〈m6|
〈m7|
〈m8|
〈m9|


=



1 1 1 1 1 1 1 1 1
−2ϕ1 ϕ2 ϕ3 ϕ2 ϕ3 ϕ1 ϕ1 ϕ1 ϕ1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a
−2ϕ4 ϕ5 ϕ6 ϕ5 ϕ6 ϕ4 ϕ4 ϕ4 ϕ4

0 0 0 0 0 a −a a −a


(5)

= (|m1〉, |m2〉, |m3〉, |m4〉, |m5〉, |m6〉, |m7〉, |m8〉, |m9〉)T ,

where ϕ1 = a2+ 1, ϕ2 = 1− 2a2, ϕ3 = a2− 2, ϕ4 = a2− 1, ϕ5 = a2+ 2, and ϕ6 =
−(1+ 2a2).

The components of the row vector〈mβ | in matrix M are polynomials of thex and y
components of the velocities{eα}, eα,x andeα,y. The vectors〈mβ |, β = 1, 2, · · · , 9, are
orthogonalized by the Gram–Schmidt procedure in a carefully considered order. The first
three orthogonal vectors correspond to the mass,x- and y-momentum modes:〈m1| =
〈‖eα‖0|, 〈m4| = 〈eα,x|, and〈m6| = 〈eα,y|. The above expressions prescribe the components
of 〈m1|, 〈m4|, and〈m6|. These three vectors span the hydrodynamic subspace of the eigen-
space of the collision operator for a two-dimensional athermal LBE model. The remaining
six vectors span the kinetic subspace. The vector〈m2| = 〈3‖eα‖2− 2(1+ a2)‖eα‖0| is
constructed by orthogonalizing the energy mode〈‖eα‖2|. Similarly, vectors〈m5| and〈m7|
are respectively built upon〈eα,x‖eα‖2| and〈eα,y‖eα‖2|; 〈m8| is constructed upon〈e2

α,x −
e2
α,y| and〈m9| = 〈eα,xeα,y|; and finally〈m3| is obtained from〈‖eα‖4|. By means of their

construction, the row vectors inM are mutually orthogonal, but they are not normalized, their
norms being chosen to simplify algebraic manipulations. Whena = 1, M reduces to that
for the D2Q9 model on a square grid with a different normalization of|pxx〉 [8]. Therefore,
the proposed model can be considered as a generalization of the model on a square lattice.
It should be noted that whena 6= 1, there are three nonzero (kinetic) energy levels in the
model which introduce additional degrees of freedom into the model and extra care must
be taken in the construction of〈m2|, 〈m8|, and〈m3|, i.e., they must be orthogonalized with
the Gram–Schmidt procedure in the particular order of〈m2|, 〈m8|, and〈m3|.

It is interesting to note that the moments〈mβ | f 〉 have a physical interpretation. The
matrixM so constructed in the above naturally leads to the moment vector in moment space
M as

| f̂ 〉 = (ρ, e, ε, jx, qx, j y, qy, pxx, pxy)
T, (6)

whereρ is the density,e is related to the kinetic energy,ε is related to the kinetic energy
squared fora = 1 (but has no obvious physical meaning whena 6= 1), jx and j y are x
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and y components of the momentum density,qx and qy are proportional to thex and
y components of the energy flux, andpxx and pxy are proportional to the diagonal and
off-diagonal components of the viscous stress tensor.

For the collision process, we propose to use the following equilibrium distribution func-
tions of the (nonconserved) moments, which depend only on the conserved moments, i.e.,
ρ, andj = ( jx, j y),

e(eq) = 2
(
3c2

s − 1− a2
)
ρ + 3

ρ

(
j 2
x + j 2

y

)
, (7a)

ε(eq) = 1

4
α3ρ, (7b)

q(eq)
x = 1

2
c1 jx, (7c)

q(eq)
y = 1

2
c2 j y, (7d)

p(eq)
xx =

(a2− 1)

a2

[
3(a2+ 1)c2

s − 2a2
]
ρ + 3

ρ

(
a2 j 2

x −
1

a2
j 2
y

)
, (7e)

p(eq)
xy =

1

ρ
jx jy, (7f)

where the coupling coefficient betweenp(eq)
xx andρ (which vanishes in the standard D2Q9

LBE model) is introduced to obtain the isotropy of the sound speed. The values of the cou-
pling constants (α3, c1, andc2) in the above equilibria are obtained by optimizing isotropy
and stability of the model [8]. It should be noted that the energy is not considered as a con-
served quantity here because the model is athermal. (The model does not possess sufficient
degrees of freedom to accommodate the dynamics of locally isotropic heat transport.)

In what follows the idea of the “incompressible” LBE [13] is applied to the above
equilibria so thatρ is replaced by a constantρ0 in the denominators of equations (7a), (7e),
and (7f). This choice allows for better comparison with other incompressible simulations
and simpler algebra while retaining correct acoustics.

The collision process is modeled by the following relaxation equations

| f̂ ∗〉 = | f̂ 〉 − S [| f̂ 〉 − | f̂ (eq)〉], (8)

where| f̂ ∗〉 denotes the postcollision state, andS is the diagonal relaxation matrix

S = diag(0, s2, s3, 0, s5, 0, s7, s8, s9). (9)

The model reduces to the usual lattice BGK model if all the relaxation parameters are set
to be a single relaxation timeτ (anda = 1), i.e.,sα = 1/τ . It should be stressed that the
relaxation parameters are not independent, as shown in the next section. The constraints of
isotropy lead to the coupling between these relaxation parameters [8]. Obviously, the usual
lattice BGK model does not possess the freedom for such couplings, therefore it would not
work on a rectangular grid.
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3. ANALYSIS OF LINEARIZED DISPERSION EQUATION

The analysis presented in what follows is similar to that presented in [8], where the goal
of the work was to determine the stability conditions for the coupling coefficientsα2 and
α3, and the constraints on the relaxation parameterssα.

We consider a system of sizeNx × Ny with periodic boundary conditions and look for
small amplitude solutions in the presence of a uniform flow [for given values ofρ and
V = (Vx, Vy) = J/ρ]. For a wave vectork in the reciprocal space of the computational
domain, we search for solutions

fα(r , t) ∝ exp(−i k · r + zt). (10)

To first order ink, we have the linearized dispersion equation,

det(K(1) +M−1CM− zI) = 0, (11)

whereI is the identity operator,K(1) is the linearized advection operator which is a diagonal
matrix

K(1) = diag(0, i k · e1, . . . , i k · e8), (12)

andC is the linearized collision operator

C =



0 0 0 0 0 0 0 0 0
α4s2 −s2 0 6Vxs2 0 6Vys2 0 0 0

α3s3/4 0 −s3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 c1s5/2 −s5 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 c2s7/2 −s7 0 0

α5s8 0 0 6a2Vxs8 0 −6Vys8/a2 0 −s8 0

0 0 0 Vys9 0 Vxs9 0 0 −s9


, (13)

where

α4 = 2
[
3c2

s − (1+ a2)
]
, (14a)

α5 = (1− a2)

a2

[
2a2− 3c2

s(a
2+ 1)

]
. (14b)

The linearized dispersion equation (11) can be solved by perturbation technique in power
series ofk [8]. To ensure isotropy and Galilean invariance in the limit ofk → 0, we need
to solve the linearized dispersion equation up tok2.

In the first order ofk, three solutions are obtained: one corresponds to transverse ex-
citations which are convected with the uniform speed of the fluidk · V/k, whereas the
other two are acoustic waves with phase velocity±cs, where the speed of soundcs can
be chosen within limits that is deferred to later discussion. The sound waves also have the
correct dependence on the applied uniform velocityV of the fluid up to first order inV ,
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i.e.,cs→ cs ± V cosφ, whereφ is the angle betweenk andV. The nonlinear terms in the
equilibria of Eqs. (7a)–(7f) provide the correct Galilean coefficients for both transverse and
longitudinal waves.

In the second order (ink) of the solutions of the dispersion equation, the constraints on
the isotropy of the transport coefficients for the hydrodynamic modes lead to

c1 = c2+ 4(1− a2)

a2
(15)

and the following relationships between the relaxation parameters

1

s̃2
= 2(4+ c2)

[(
12c2

s − c2
)
(1+ a2)− 2(5a2+ 2)

]
(1+ a2)(1+ c2− 3a2)

(
c2+ 10− 12c2

s

)+ 6[a4(c2− 2)− 3(a2− 1)]

1

s̃9
, (16a)

1

s̃8
= 2(4+ c2)

[(
12c2

s − c2
)
(1+ a2)− 2(3a4+ 5a2+ 5)

]
(1+ a2)(1+ c2− 3a2)

(
c2+ 10− 12c2

s

)+ 6[a4(c2− 2)− 3(a2− 1)]

1

s̃9
, (16b)

where 1/s̃α ≡ (1/sα − 1/2). The coupling betweens2 ands9 is required only whena 6= 1.
The kinematic shear viscosityν and the kinematic bulk viscosityζ are

ν = 4+ c2

6

(
1

s9
− 1

2

)
, (17a)

ζ = 1

12

(
7+ 3a2+ c2− 12c2

s

) ( 1

s2
− 1

2

)
. (17b)

For a givena, the speed of sound andc2 must be chosen such that the shear and bulk
viscosities are positive and the Eqs. (16a) and (16b) lead to positive values fors2 ands8.

The values ofcs andc2, which optimize the isotropy and stability of the model, depending
on the grid aspect ratioa, are determined by the linear analysis of the model [8]. In the case
of square grid, i.e.,a = 1, we have foundc2

s = 1/3 andc2 = −2. This result coincides with
the one given in [8] and the relationship betweens8 ands9 given by Eq. (16b), and the shear
and bulk viscosities given by Eqs. (17a) and (17b), all reduce to the previous results for a
square lattice wherec1 = −2 [see Eqs. (40)–(43) in [8] forcs, s9(s8),ν, andζ , respectively].
However, the coupling betweens2 ands9 is unique to the model on a rectangular grid. This
coupling is due to the dependence ofp(eq)

xx on ρ, which in turn leads the termα5s8 in the
linearized collision operatorC in Eq. (13). Finally, note thatα3 has little influence and is
set to be equal to−2.

The linearized dispersion equation can be solved numerically for any value ofk to
determine the linear stability of the system by computing the rate of growth of spatially
periodic excitations superimposed to a uniform flow of constant velocityV, as previously
shown in the case of a square grid [8]. Through this analysis it is found that the present
model is much less stable than the square one, i.e., the stable region in parameter space of
V andsα is much smaller than that for the model with a square lattice. For instance, when
a = 1/2, a stability condition is thatV ≤ 0.05, whereas for the model with a square lattice
(a = 1), the same stability condition is thatV ≤ 0.20. One reason for this is that in general
the sound speedcs decreases with the aspect ratioa; for instance, whena = 1/2 the optimal
speed of sound is about 0.377, which is different from the usualcs = 1/

√
3≈ 0.577 on

a square lattice. Therefore, the local velocity magnitude must be decreased accordingly
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to keep the local Mach in check so that the low Mach number approximation remains
valid. This means that the present model will have limited ability to simulate flows even
at moderate Reynolds numbers. In addition, when using a combination of rectangular and
square grids (the simplest case of grid refinement in one direction) in the situation where
acoustic propagation is important, it will not be possible to choose an optimal value of the
sound speed for the two different grids.

We would like to note that, although there is no simple interpretation of the instability
of the LBE models because of the presence of a uniform velocityV, information on the
instability can be obtained by analyzing the velocity dependence of the attenuation of sound
waves using the linearized dispersion equation [8].

Let us consider the case where the uniform velocity is parallel to the wave vectork with
a polar angleθ (betweenk and x-axis). For small values ofk and the particular choice
of c2

c2 = (a2− 3), (18)

we have the following results. The transverse mode has phase velocityv⊥ = V and its
attenuation is given by

γ⊥ = k2

(
1

s9
− 1

2

)(
(1+ a2)

6
− V2

{
1− 9(1− a2)2 sin2 2θ

2
[
1− 13a2+ a4+ 6(1+ a2)c2

s

]}). (19)

For the longitudinal modes, we obtain as phase velocityv‖ = ±
√

c2
s + V2 and attenuation

coefficientγ‖ = (γb + γ⊥)/2, with (to first order inV)

γb = k2

(
1

s2
− 1

2

)(
1+ a2− 3c2

s

3
± V

cs
[
1+ 8a2+ a4− 12(1+ a2)c2

s

]
×{(1+ a2)

(
7a2+ 36c4

s

)− 3(7+ 12a2+ 3a4) c2
s

+ 12(1− a2)c2
s cos2θ [2+ (1− a2)(2− 3 cos2 θ)]

})
. (20)

Contrary to the case of square grid, it is not possible in general with a given value ofa 6= 1
to find a value ofcs for which the linear dependence of the attenuation of acoustic waves
on V can be eliminated (fora = 1, this can be accomplished by settingc2

s = 1/3). This is
a possible cause of instability in the model.

4. SIMULATIONS

We use the two-dimensional multirelaxation LBE model on either a square grid or a
rectangular grid for the following simulations. The central routine (collision and advection)
is quite close to that for the standard square LBE and leads to similar performances (using
a workstation with a 500 MHz EV6 processor, the overall computation time per node and
per time step is in the range 0.2 to 0.4 microsecond depending whether the cache is large
enough or not).
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4.1. A Vortex Traveling with a Constant Velocity

To test the ability of the present LBE scheme to simulate a viscous flow, we consider the
particular case of a simple vortex superimposed to a uniform flow of velocityV. We take
as initial condition for the flow

u0(r , t = 0) = V + (y0− y, x − x0) ω0 exp[−(r − r0)
2/R2], (21)

wherer0 = (x0, y0) is the initial position of the vortex center, andω0 andR characterize,
respectively, the amplitude and the extent of the vortex. The evolution of the corresponding
macroscopic flow is fairly simple: the center of the vortex travels with the velocityV and
the maximum value of the vorticity (at the centerr0+ Vt) decays in time as

ωmax(t) = R4ω0

(R2+ 4νt)2
= ω0

(1+ 4t∗)2
, (22)

wheret∗ ≡ νt/R2 is the dimensionless time.
The system size isNx × Ny = 109× 109, with a grid aspect ratioa = 1/2. The size

of the vortex isR= 6. Values of other parameters are:α2 = −3.5, α3 = 2.0, c2 = −2.9,
ands8 = 1.8, i.e.,ν = 0.01018 according to Eq. (17a). The results obtained by the LBE
simulations with various conditions agree very well with the analytic solution of the flow
for V = 0. However, whenV increases there are departures from the simple result of
Eq. (22) because of the dependence of the transport coefficients andg-factor onV, as
discussed for the square grid in [8]. An example of such behavior is demonstrated in
Fig. 2. Figure 2 shows two LBE simulation results ofωmax as a function of dimensionless
time t∗ ≡ νt/R2, with V = (0, 0) and V = (0.05, 0). Equation (22) is used to fit the
data to obtain the viscosity. The results areν = 0.9876ν0 andν = 0.8966ν0 for Vx = 0 and
Vx = 0.05, respectively, whereν0 is given by Eq. (17a). There are two factors that contribute
to the correction in the viscosity: the wave-numberk-dependence andV-dependence of

FIG. 2. LBE simulation of a moving vortex. Decay of the vorticity maximum. The grid aspect rationa = 1/2.
Symbol+ and× are simulation results forV = 0 andV = 0.05, respectively. The solid lines are fitting of the
data according to Eq. (22) with the viscosity of valueν = 0.9876ν0 andν = 0.8966ν0, respectively, whereν0 is
given by Eq. (17a).
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the transport coefficients [8]. The same simulations are performed on a square grid and
the results are:ν = 0.9866ν0 andν = 0.8745ν0 for Vx = 0 andVx = 0.05, respectively. It
should be noted that in the LBE simulations, initial conditions include not only the conserved
quantities such as the density and velocity fields, but also all the nonconserved quantities
such as fluxes and the stress, which can be obtained from the initial velocity field through
a Chapman–Enskog analysis of the model.

4.2. Poiseuille Flow with Arbitrarily Inclined Walls

The second test is the two-dimensional Poiseuille flow with arbitrarily inclined walls.
This situation allows us to test the no-slip boundary conditions in the LBE model. We
consider a system of sizeNx × Ny with periodic boundary conditions. The boundaries
of the channel are placed with an arbitrary inclined angleθ with respect tox-axis, as
illustrated in Fig. 3. The no-slip boundary conditions used here for the channel walls are the
interpolated bounce-back boundary conditions proposed in [14]. The interpolated bounce-
back boundary conditions combine interpolation and bounce-back schemes to deal with
boundaries which are off the lattice points.

We first studied the time evolution of the flow starting at rest, and compared the results
obtained by using the rectangular and square grids. The time evolution of velocity fields of
the two systems agree very well with each other. We also studied the momentum transfer at
the boundary. We found an excellent agreement between its measurements for the square
and the rectangular grids, and its expected value:ρνL∂⊥V‖, whereL is the length of the
boundary, and∂⊥V‖ is the normal derivative of the shear velocity with respect to the wall,
computed at the wall.

Note that when we compute the momentum transfer for the rectangular grid, the com-
ponents of the usual momentum transfer have to be multiplied by a factora to account for
the surface of the elementary cell (assuming that all results are in nondimensional units

FIG. 3. 2D Poiseuille flow with arbitrary inclined walls. The system size is assumed to beNx × Ny. The discs
are grid points. The solid lines are the advection lines of the discrete velocities. The dashed lines are the boundaries
of the channel. The width of the channel isNy. The no-slip boundary conditions are enforced at the intersections
of the dashed lines and the thin solid lines.
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defined on the square grid). In order to better understand the origin of this factor, one has to
remember thatρ andj are the mass and momentum densities (mass and momentum per unit
surface), while the momentum transfer has to be computed from momentum: (momentum
density)× (cell surface). Usually a unique regular grid is used and the cell volume can be
taken as unit volume. Here however the surface of the cells is equal to the chosen aspect
ratioa once the square cell has been taken as unit surface. Indeed this remark applies to the
next section when computing the drag and lift coefficients.

4.3. Flow Past a Cylinder Asymmetrically Placed in a Channel

The third test we did was a two-dimensional flow past a cylinder asymmetrically placed
in a channel. This flow has been used as a standard benchmark test in CFD [15]. The flow
configuration is as follows: a cylinder of diameterd is placed in a channel of width 4.1d
and length 22d, the center of the cylinder is asymmetrically (with respect to the center line
of the channel) located at horizontally 2d from the entrance, and vertically 2d from the
lower wall of the channel, as shown in Fig. 4. The boundary condition at the entrance is a
Poiseuille profile with average speedU . The boundary condition at the exit is free exit with
a total flux equal to the input flux. The bounce-back boundary conditions are used for the
channel walls, and the interpolated bounce-back boundary conditions with a second-order
interpolation [14] are used for the boundary of the cylinder. The Reynolds number for the
flow is

Re= Ud

ν
.

We use the LBE model to simulate the flow at Re= 100 for which there is periodic vortex
shedding behind the cylinder.

The flow was computed on rectangular grids with several different values of the grid
aspect ratioa, and compared to the results with a square grid. The measured quantities are
Strouhal number St, maximum dragCmax

D , maximum lift coefficientCmax
L , minimum lift

coefficientCmin
L , and the pressure difference1P. The results are summarized in Table I.

Table I also shows the lower and upper bounds of St,Cmax
D , Cmax

L , and1P, obtained by
a number of conventional CFD methods presented in [15]. Overall, the LBE simulation
results with square or rectangular grids agree well with each other, and with the CFD results
in [15]. Figure 5 shows the contours of the stream functionψ(x, y)and the vorticityω(x, y)
of the simulations on a square grid of sizeNx × Ny = 1401× 308 and on a rectangular
grid of sizeNx × Ny = 1401× 616. The relativeL2-norm difference of the two velocity
fields is about 2.2× 10−4. Note that the aspect ratio for this particular calculation is slightly

FIG. 4. Configuration of a 2D flow past a cylinder asymmetrically placed in a channel.
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TABLE I

2D Flow Past a Cylinder Asymmetrically Placed in a Channel at Re = 100

a cs c2 Nx × Ny St Cmax
D Cmax

L Cmin
L 1P

1.00 1/
√

3 −2 709× 132 0.3021 3.153 0.926 −1.018 2.50
0.85 0.6141 −0.80 709× 155 0.3018 3.186 0.984 −1.051 2.51
0.80 0.5829 −0.90 709× 165 0.3020 3.174 0.950 −1.062 2.51
0.75 0.5412 −1.10 709× 176 0.3018 3.173 0.965 −1.053 2.51
0.70 0.5113 −1.50 709× 188 0.3007 3.195 1.013 −1.071 2.51
0.65 0.4761 −1.70 709× 203 0.3009 3.184 0.999 −1.062 2.47
0.60 0.4417 −2.00 709× 220 0.3009 3.176 1.002 −1.053 2.45
0.55 0.4086 −2.25 709× 240 0.3015 3.189 1.005 −1.052 2.42
0.50 0.3770 −2.55 709× 264 0.3007 3.199 1.019 −1.084 2.45
0.45 0.2977 −2.90 709× 293 0.2992 3.204 1.053 −1.107 2.50
CFD lower bound in Ref. [15] 0.2950 3.22 0.99 — 2.46
CFD upper bound in Ref. [15] 0.3050 3.24 1.01 — 2.50

different from that shown in Fig. 4, but this has negligible effect for the present purpose of
comparing results on the square and the rectangular grids.

The relative fluctuation of Strouhal number St is well under 1% and the values of St are
well within the bounds in [15]. The fluctuation ofCmax

D is also under 1% but the values of
Cmax

D are all slightly lower than the results in [15]. The fluctuation of1P is about 1% and the
values of1P agree well with the results in [15]. The values of lift coefficient obtained by
the LBE simulations have a variation about±6%, which is much greater than the variations
in other measured quantities.

A possible origin of the discrepancy in the lift coefficients is the following. The LBE
method is intrinsically a compressible scheme and acoustic waves may be generated by, e.g.,
initial conditions that do not include a proper pressure field or the flow itself that generates
an oscillating pressure field as is the case considered here. For a given value of the sound
speed and a given choice of the boundary conditions at the entrance and exit of the channel

FIG. 5. 2D flow past a cylinder asymmetrically placed in a channel at Re= 100. Top and bottom figure show
contours of the stream functionψ(x, y) and the vorticityω(x, y) of the flow, respectively. The dashed lines are
the simulation results on a square grid of sizeNx × Ny = 1401× 308, and the solid lines are that on a rectangular
grid of sizeNx × Ny = 1401× 616.
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the frequency of some of the longitudinal acoustic modes can be close to multiples of the
Strouhal frequency in the flow. This causes resonances between some of the acoustic waves
and the periodic shedding of vortices by the cylinder. The coupling between acoustic waves
and vortex shedding indeed affects the hydrodynamic fields, and in turn, various measured
quantities. Among the measured quantities, the lift coefficients are most sensitive to this
effect. The mean drag coefficient is also affected but to a much smaller extent. This problem
is of broad interest. However, it will be easier to study it with the model of square grid for
which the speed of sound and the bulk viscosity can be chosen in a broader range than for
the model of rectangular grid. A detailed study is beyond the scope of the present work and
will be addressed elsewhere.

5. CONCLUSION AND DISCUSSION

In this paper we have successfully proposed a two-dimensional nine-velocity generalized
lattice Boltzmann model with multiple relaxations on a rectangular grid with arbitrary
aspect ratioa = δy/δx. We have numerically validated the model by using the model to
simulate several benchmark problems, and have obtained satisfactory results. In contrast
to the previous two-dimensional, nine-velocity, multirelaxation model on a square grid [8],
the model on a rectangular grid is more prone to instability, and the admissible maximum
value of local velocity magnitude is much less than that in the model on a square grid. It
should also be stressed that, although this work is in part motivated by a previous work [2],
it is realized that the nine-velocity lattice BGK equation cannot possibly work properly on a
rectangular grid. Specifically, the lattice BGK equation does not have sufficient degrees of
freedom to satisfy the constraints imposed by isotropy and Galilean invariance. With nine
discrete velocities in two dimensions, it is necessary to use the multirelaxations to construct
an LBE model on a rectangular grid.

This work is our first attempt to construct a lattice Boltzmann model on an arbitrary
unstructured grid. As discussed in Ref. [9], one difficulty encountered in the LBE model
on an unstructured grid is due to the fact that∇eα f 6= eα∇ f because the discrete velocity
set{eα} has spatial dependence. In this work, we found that there are additional issues in
the LBE model on an unstructured grid needed to be addressed.

First, we found that the local grid structure severely affects the local sound speed. If the
sound speed varies spatially depending on local grid structure, then the model is unphysical.
Correct acoustic propagation is an essential part of the lattice Boltzmann method. Secondly,
the constraints of isotropy and Galilean invariance are difficult to satisfy by using the lattice
BGK model, as proposed in [9], unless the discrete velocity set includes a large number
of velocities. Thirdly, the numerical stability is severely affected by the local grid structure
even for uniform structured grid, as we have demonstrated in this work. Stability is of key
importance to an effective lattice Boltzmann algorithm. However, we have not yet developed
a method to systematically improve the stability of the lattice Boltzmann method. We believe
that the aforementioned issues must be resolved before we can construct a lattice Boltzmann
model on an arbitrary unstructured grid.
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